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CHAPTER 5 

Multiplicative Structures 

Gerard Vergnaud* 

History teaches us that science and technology have developed with the aim of 
solving problems. One of the most challenging points in education is probably to 
use meaningful problems so that knowledge, both in its theoretical and its practi
cal aspects, may be viewed by students as a genuine help in solving real prob
lems. However, this condition, that knowledge be both operational and interest
ing, cannot easily be satisfied. 

Piaget has demonstrated that knowledge and intelligence develop over a long 
period of time, but he has done this by analyzing children's development in tenns 
of general capacities of intelligence, mainly logical, without paying enough 
attention to specific contents of knowledge. It is the need to understand better the 
acquisition and development of specific knowledge and skills, in relation to 
situations and problems, that has led me to introduce the framework of concep
tual fields. A conceptual field is a set of problems and situations for the treatment
of which concepts, procedures, and representations of different but narrowly 
interconnected types are necessary. 

Why is such a framework necessary? 

I. It is difficult and sometimes absurd to study separately the acquisition of
interconnected concepts. In the case of multiplicative structures, for instance, as 
we see in this chapter, it would be misleading to separate studies on multiplica
tion, division, fraction, ratio, rational number, linear and n-linear function, 
dimensional analysis, and vector space; they are not mathematically independent 
of one another, and they are all present simultaneously in the very first problems 
that students meet. 

*Other niembers of the research group whose experiments were reported are A. Rouchier, G.
Rirrll, P M�rth,-, (' I .�n,l,.._, A Vlob, R Metregi•t,-. flnd, tw'ently, J. Rog•lslci •nd R. S•mtlr<'Ay. 
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2. It is also wise, in a psychogenetic approach to the acquisition of specific
ideas, to delineate rather large domains of knowledge, covering a large diversity 
of situations and different kinds and levels of analysis. This enables one to study 
their development in the student's mind over a long period of time. 

3. Finally, there are usually different procedures and conceptions and also
different symbolic representations involved in the mastery by students of the 
same class of problems. Even though some of these conceptions and representa
tions are weak or partially wrong, they may be useful for the solution of elemen
tary subclasses of problems and for the emergence of stronger and more nearly 
universal solutions. 

The conceptual-field framework makes it possible to study the organization of 
these interconnected ideas, conceptualizations, and representations over a period 
of time long enough to make the psychogenetic approach meaningful. 

I have been interested in two main conceptual fields, additive structures and 
multiplicative structures, viewing them as sets of problems involving arithmeti
cal operations and notions of the additive type (such as addition, subtraction, 
difference, interval, translation) or the multiplicative type (such as multiplica
tion, division, fraction, ratio, similarity). Of course, multiplicative structures 
rely partly on additive structures; but they also have their own intrinsic organiza
tion which is not reducible to additive aspects. See Vergnaud, 1981; Vergnaud, 
1982; Vergnaud, 1983 for additive structures. 

Other important conceptual fields, interfering with these two, include (a) 
displacements and spatial transformations; (b) classifications of discrete objects 
and features, and Boolean operations; (c) movements and relationships among 
time, speed, distance, acceleration, and force; (cl) parenthood relationships; and 
(e) measurement of continuous spatial and physical quantities.

Some of these last conceptual fields play an important part in the meaning and
understanding of additive and multiplicative structures; reciprocally, the devel
opment of additive or multiplicative structures is necessary for the mastery of 
certain relationships involved in other conceptual fields. It is a complex land
scape. Still, I find it fruitful to delineate distinct domains, if they can be con·
sistently described, even though these domains are not independent. 

Preliminary Analysis 

Looking at multiplicative structures as a set of problems, I have identified three 
different subtypes: (a) isomorphism of measures, (b) product of measures, and 
(c) multiple proportion other than product.
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Isomorphism of Measures 

The isomorphism of measures is a structure that consists of a simple direct 
proportion between two measure-spaces MI and M 2. It describes a large number 
of situations in ordinary and technical life. These include: equal sharing (persons 
and objects), constant price (goods and cost), uniform speed or constant average 
speed (durations and distances), constant density on a line (trees and distances); 
on a surface, or in a volume. Four main subclasses of problems can be identified: 

MULTIPLICATION 

Schema 5.1 illustrates the isomorphism of measures for multiplication. 

Example 1. Richard buys 4 cakes priced at 15 cents each. How much does he 
have to pay? 

a= 15, b = 4, M1 
= [numbers of cakes], 'M2 = [costs).

Example 2. A farm of 45.8 ha produces 6850 kg of com per ha. What will be 
the yield? 

a = 6850, b = 45.8, M
1 
= [areas], M2 = [weights of com).

Multiplication problems do not consist of a three-term relationship but of a 
four-term relationship from which children have to extract a three-term relation
ship. They can do it by extracting either a binary law of composition or a unary 
operation. Each method implies different operations of thinking, as shown 
below. 

Binary Law of Composition 

From Schema 5.1 chiidren can extract a x b = x. In Example 1, for instance, 
the child recognizes the situation to be multiplicative, and therefore multiplies 4 
x 15 or 15 x 4 to find the answer. This binary composition is correct if a and b 
are viewed as numbers. But, if they are viewed as magnitudes, it is not cle?r why 
4 cakes x 15 cents yields cents and not cakes. 
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Unary Operarion 

It is most likely that children, especially young ones, do not extract a binary 
law of composition but rather a unary operation. This can be done in two 
diflerent ways. Children can (a) use a scalar operator (a� x) that consists of 
transposing in M2, from a to x, the operator that links 1 to bin M1 • 

In Schema 5.2, xb is a scalar operator because it has no dimension, being a 
ratio of two magnitudes of the same kind; b cakes is b times as much as I cake, 
and the cost of b cakes is also b times as much as the cost of I cake. Or, (b) 
children can use a function operator (b � x) that consists of transposing on 
the lower line, from b to x, the operator that links 1 to a on the upper line. 

In Schema 5.3, x a is a function operator because it represents the coefficient of 
the linear function from MI to M2• Its dimension is the quotient of two other 
dimensions (e.g., cents per cake, kg per ha). 1

FIRST-TYPE DIVISION 

Schema 5 .4 illustrates the first-type division, which is to find the unit value 
f(l). 

1 Another procedure for solving multiplication problems consist$ of adding a + a + a ... (b 
limes), bul it is not a multiplicative procedure. II only shows that the scalar procedure relies upon 
iteration of addition. One does nol find, in young children, lhe symmetric procedure b + b + b 
... (a limes) becau$C It is not meaningful.) 



5. Mul1iplica1ive Structures 131 

Example 3. Connie wants to share her sweets with Jane and Susan. Her mother 
gave her 12 sweets. How many sweets wi11 each receive? 

a = 3, b = 12, M1 = [numbers of children],
M2 = [numbers of sweetsl

Example 4. Mrs Johnson bought some large peaches. Nine peaches weigh 2 
kg. How much does one peach weigh, on the average? 

a =  9, b = 2, M 1 = [numbers of peaches], M2 = [weights]

This class of problems can be solved by applying a scalar operator lb to the 
magnitude c (see Schema 5.5.). 

Some children, because mental inversion of the relationship x b into / b' is 
difficult, prefer to try to find x such that x X b = c (eventually by trial and error).
This missing/actor procedure, which is similar to missing addend procedures in 
subtraction problems, avoids the conceptual difficulty raised by inversion. But it 
is of value only for small whole numbers. Adults also use this missing factor 
procedure, when b and c are entries in the familiar multiplication table, for 
instance. But whereas they are able to shift to the canonical procedure c!b when 
necessary, young children usually fail. 

Another procedure is available i11 the case of sharing objects: delivering them 
one by one to the participants or to different places in space. This can also be 
done mentally, even in other cases (by analogy), but it is inefficient and has no 
multiplicative character. 
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SECOND-TYPE OIVISJON 

Schema 5. 6 illustrates second-type division, which is to find x knowing /(x) 
and /(I}. 

Example 5. Peter has $15 to spend and he would like 10 buy miniature cars. 
They cost $3 each. How many cars can he buy? 

a = 3, b = 15, M 1 = [numbers of cars), M2 = [costs). 

Example 6. Dad drives 55 miles per hour on the freeway. How long will it take 
him to get to his mother's house, which is 410 miles away? 

a = 55, b = 410, M1 = (durations), M2 = [distances).

This class of problems can usually be solved by inverting the direct function 
operator and applying it to b, as shown in the Schema 5. 7. 

This procedure is difficult for children, not only because of the inversion 
problem, but also because the inverse operator has a dimension (inverse of the 
direct one) that is unusual and harder to conceive (e.g., cars per dollar, hours per 
mile). Frequently, especiaIJy when the numbers are not small whole numbers, 
children prefer to find out how many times a goes into b, get the scalar 
operator, and transpose it in M 1• This avoids reasoning on inverse quotients 
of dimensions. 

Children can also attempt additive procedures a+ a+ a, ... until they get to 
b, then count the number of times they have added a. 

RULE-OF-THREE PROBLEMS: GENERAL CASE 

Sche.ma 5.8 illustrates: rule-of-three problems in the general C:ISe. 



5. Multiplicative Structures 133 

Example 7. The consumption of my car is 7.5 liters of gas for 100 km. 
How much gas will I use for a vacation trip of 6580 km? 

a = 100, b = 7 .5, c = 6580, M 1 = [distances], 
M2 = [gas consumptions].

Example 8. When she makes strawberry jam, my grandmother uses 3.5 kg of 
sugar for 5 kg of strawberries. How much sugar does she need for 8 kg of 
strawberries? 

a = 5, b = 3.5, c = 8, M1 = [sirawberry weightsJ, 
M

2 
= [sugar weights}.

This class of problems can be solved by different procedures, using different 
properties of the four-term relationship. They will be examined later in this 
chapter, under procedures for rule-of-three problems in the experiments. 

It should already be clear that multiplication and division problems are simple 
cases of the more general rule-of-three class of problems in which four tenns are 
involved, one of which is equal to one. In solving problems in this structure, 
students naturally use the isomorphic properties of the linear function: 

fix + x') = fix) + fix')
fix - x') = f(x) - fix')

/(AX) = >..j(x) 
f(>..x + >..'x') = >..f(x) + >..'f(x')

It is less natural for them to use the standard properties of the proportion 
coefficient: 

fix) = ax
x = Ila f(x) 

Because the isomorphism properties appear to be more natural than the propor
tional coefficient properties, the expression isomorphism of measures is used to 
name and describe the simple direct proportion structure. This term enables us to 
distinguish very clearly this structure from the next ones, the product of mea
sures and the multiple proportion. Whereas the product of measures structure 
and the multiple proportion structure involve three (or more) variables and a 
bilinear (or n-linear) function's model, the isomorphism of measures involves 
only two variables and is properly modelled by the linear function. 
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Produci of Measures 

The product of measures is a structure that consists of the Cartesian composi
tion. of two measure-spaces, M1 and M2, into a third, M3. It describes a fair 
number of problems concerning area, volume, Cartesian product, work, and 
many other physical concepts. 

Because1here are (at least) three variables involved, this structure cannot be 
represented by a simple correspondence table like the one used for the isomor
phism of measure structure. Rather it is represented by a double-correspondence 
table: For example, in the case of the area of a rectangle: 

Schema 5.9 reflects the double proportion of area to length and width 
independently. A similar relationship exists in the next structure (multiple 
proportion) but the choice and the expression of units do not obey the same 
rules. In the product of measures, there is a canonical way of choosing units. 
That is,/( I, I) = l ;  or in the case of finding the area of a square,

(I unit of length) x ( l  unit of length) == (1 unit of area). 

The units of the product are expressed as products of elementary units; for 
example, square centimeters, cubic centimeters or, in Example 9: 

/0 boy x I girl) = l couple. 

In the multiple proportion (to be described later), units do not generally have 
these properties. 

Example 9. Four girls and'3 boys are at a dance. Each boy wants to dance with 
each girl, and each girl with each boy. How many different boy-girl couples are 
possible? 

The different possible couples can be easily generated and classified by a 
double-entry table, and the proportion of the number of couples to the number of 
boys and the numbers of girls independently can also be made visible by a double 
correspondence table: the number of couples is proportional to the number of 
boys when the number of girls is held constant (parallel columns), and to the 
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number of girls when the number of boys is held constant (parallel lines) (see 
Schema 5.10). 

The Cartesian product is so nice that is has very often been used (in France 
anyway) to introduce multiplication in the second and third grades of 
elementary school. But many children fail to understand multiplication when it 
is introduced this way. The arithmetical structure of the Cartesian product, 
as a product of measures, is indeed very difficult and cannot really be 
mastered until it is analyzed as a double proportion. Simple proportion should 
come first. 

Two classes of problems can be identified, multiplication and division, the 
first of which is illustrated in Schema 5 .1 1 .  Given the value of the elementary 
measures, find the value of the product-measure. 

Example JO. What is the area of a rectangular room that is 7 m long and 4.4 
m wide? 

a= 7, b = 4.4, M1 = [widths], M2 = [lengths], M3 = [areas].

Example 11. What is the volume of a pipe that is 120 cm long and has a cross
sectional area of 15  cm2? 

a =  120, b = 15, M1 = [section areas], M2 = [heights], M3 = 
[volumes).
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The solution a x b == x is not so easy to analyze in tenns of scalar and function 
operators. It is a product of two measures both in the dimensional and the 
numerical aspects: 

area (m2) = length (m) x width (m)
volume (cm3) = height (cm) x section area (cm2)

In the first structure (i.e., isomorphism of measures), we could not explain 
why multiplying cents by cakes would output cents and not cakes. This could 
only be explained either by the scalar operator (cents .....,_. cents) or by the function 

( ak cents/cake operator c es------ cents). 
In this second structure (i.e., product of measures), the landscape is different, 

and multiplying meters by meters outputs square meters; multiplying girl-dancers 
by boy-dancers outputs mixed couples of dancers. 

The second class of problems, division, is illustrated by Schema 5.12. Given 
the value of the product measure and the value of one elementary measure, find 
the value of the other one. 

Example 12. The area of a pool is 150 m2. Filling it up requires 320 m3 water. 
What is the average height of water? 

Here again, the division procedure cannot easily be described by a scalar or 
function operator. The dimension of the quantity to be found is the quotient of 
the dimension of the product by the dimension of the olher "elementary 
measure.'' 

volume (m3) / area (m2) = height (m)

One way to explain the structure o( the product is to see it as a double 
isomorphism or double proportion. Let us take the example of the volume of 
straight prisms. 

If height is multiplied by 2, 3 or ;,.,, volume is multiplied by 2, 3 or ;,., (provided 
basic area ia held constant) (see Schema 5.13.) 

Similarly, if basic area is multiplied by 2, 3 or X', volume is multiplied by 2, 3 
or ?..' (provided height is held constant). If one adds basic areas of different 
prisms, volumes are also added (provided height is the same). 
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These properties issue directly from the isomorphism properties of the linear 
function (scalar aspect, additive aspect). When height is held constant, (x h) 
can be viewed as a function operator linking basic area to volume (see Schema 
5. 14.) 

The same can be said for basic area when it is held constant. Although 
this analysis is a bit sophisticated, it shows that although product is different 
from isomorphism it can also be considered as a double isomorphism . . 

It follows that if height is multiplied by A and basic area by ">,,.', volume is 
multiplied by n'.

Reciprocally, isomorphism can also be viewed as a product. For instance: 

time x speed = distance 
volume X volumic mass = mass. 

These relationships are well iliustrated by the function operator (see 
Schema 5.15.) 
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Still, one should note that, in this case, speed and volumic. mass are considered 
as constants and not as variables, whereas in the product (volume, for instance) 
both elementary measures (basic area and height in the case of volume) are 
variables. One must also keep in mind that, in the isomorphism structure, the 
quotient of dimensions is a derived magnitude and not an elementary one. If time

x speed = distance, it is because speed = distance/time. If volume x volumic 

mass = mass, it is because volumic mass = mass/volume. However, in the 
product structure, at least in the product met by children at the primary and 
secondary levels (e.g., area, volume, Cartesian product), the elementary mea
sures are really elementary and not quotients. 

Multiple Proportion 

The multiple proportion is a structure very similar to the product from the 
point of view of the arithmetic relationships: a measure-space M3 is proportional 
to two different independent measure-spaces M

1 
and M2• For example: 

I . The production of milk of a farm is (under certain conditions) proportional
to the number of cows and to the number of days of the period considered.

2. The consumption of cereal in a scout camp is proportional to the number of
persons and to the number of days�

Time is very often involved in such structures because it intervenes in many 
phenomena as a direct factor of proportionality (e.g., consumption, production, 
expense, outcome. But there are other factors; in physics, for instance: 

p = kRP. (Power, Resistance, Intensity) 

Whereas in physics multiple proportion phenomena can often be interpret�d .as 
products, this is not always possible in multiple proportion problems. Most of the 
time, no natural choice of units can provide/{ I , J)  = I. For instance, there is no 
reason why a cow should produce I liter of milk per day, or a person eat 1 kg of 
cereal per day or per week. Usually there exists a coefficient k not equal to l ;  
j{ l  ,l) = k. 
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In multiple proportion, the magnitudes involved have their own intrinsic
meaning, and none of them can be reduced to a product of the others. There is no 
reason to interpret the double proportionality of the consumption of cereal to the 
number of persons and to the number of weeks as a dimensioned operation 

(i.e. , cereal == persons x weeks). 

Here again several classes of problems can be identified. I will only give 
examples, the analysis being similar to what has been explained earlier. 

MULTIPLICATION 

Example 13. A family of 4 persons wants to spend 13 days at a resort. The cost 
per person is $35 per day. What will be the expense? 

FIRST-TYPE DIVISION 

First-type division involves finding the unit value fil, 1). 
Example 14. A farmer tries to calculate the average production of milk of his 

cows during the 180 best days of the year. With 17 cows, he has produced 
70,340 liters of milk during that period. What is the average production of milk 
per cow per day? (See Schema 5.16.) 

This division does not usually exist in the product of measures, 
because j{l ,l) == I,  at least in the metric system. 

SECOND-TYPE DIVISION 

Second-type division involves finding x knowingfix,a) == b andfil,1). 
Example 15. A scout camp has just received 500 kg of cereal. The allowed 
distribution of cereal is 0.6 kg per person per week. There are 236 persons in the 
C';'lllP· How long will the cereal last? (See Schema 5.17.) 
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The bilinear function is an adequate model for both the product of measures 
and the multiple proportion. One hypothesis is that it implies more complex 
operations of thinking than does the linear function. Another hypothesis is that 
the product of measures raises its own difficulties that are not reducible to those 
of the multiple proportion. 

In the next part of this chapter, I report experiments on problems that can 
be analyzed by these structures. Sometimes problems are combinations of 
different structures. The above analysis is a first approach to these problems. A 
complementary analysis will be made later. The value of the magnitudes 
involved, the concept of average, and the reference context are also important 
characteristics of problems. 

Experiments 

This section describes several experiments, conducted during the past 4 or 5 
years, showing either results on the comparative complexity of problems and 
procedures, or the evolution in the classroom of conceptualizations and pro
cedures in a dialectical relationship with situations. 

Isomorphism, Product, and Multiple Proportion 

The very first experiment performed by our research group (Vergnaud, Ricco, 
Rouchier, Marthe, & Metregiste, 1978) aimed at comparing the difficulty of 
different problems and evaluating the stability of procedures used by students. [t 
consisted of different versions of the same three problem-structures: 

1 .  Volume: calculation of the volume of a right parallelipiped: x = a x b x c. 
2. Direct proportion: among three measure-spaces; calculation of x knowing

f O g(x) = c x = cl(a x b) (See Schema 5. 18.) 
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3. Double proportion: calculation of a magnitude proportional to time and to
another magnitude. (See Schema 5.19.)

The first version of these structures was a complex problem (with several 
questions), chosen from a handbook for 11-12-year-olds, involving all 
three structures. 

"Central heating is being installed in a bouse; the dimensions are length = 18 m, 
width = 6 m, height = 4 m. 

I. A radiator is made of 8 elements. Each element can heat 6 m3. How many radiators 
are needed? 

2. The average consumption is 4 kg coal per day for each radiator. The heating period 
runs from October I 10 April 15. How much coal will be used?" 

The other versions were single questions, built ad hoc for the sake of compari
son: 

Volume: "What is the volume of water used to fill up a rectangular pool: 
Length = 17 m, width = 8 m, depth = 3 m." 

Direct proportion: "A luxury train should oontain 432 first-class seats. Each 
car has 8 compartments and each compartment has 6 seats. How many cars are 
needed'?" Another version was also used. 
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Double proportion: "A fanner owns 5 cows. They each yield an average of23 
liters of milk per day during the 180 best days of the year. How much milk does 
the farmer produce during this period?" 

Among 84 students ( l l-12 years old) we could find the following hierarchy: 
The easiest problems were the direct proportion and the double proportion 

ones, although the direct proportion problem needed either two divisions, or a 
multiplication and a division. Both problem types were solved by i of the 
students in the simple version and ! in the complex version. 

The most difficult problem had to do with volume, both in the simple and the 
complex versions (success rate of ff and ff), although the calculations were the 
simplest. 

We analyzed the different procedures used and categorized them, so as to 
compare the stability of these categories on two (or three) versions of the same 
problem-structure. Many students had a perimetric representation of volume, 
adding lengths together and trying to take into account as many sides as possible 
(either by multiplying 2, 3 or 4 times the sum L + W + H, or by adding 1, 2 or 4 
times the height to the perimeter of the base, or by any other combination). Some 
students also had a surface representation (adding areas) or a mixed representa
tion (multiplying perimeter by height, for instance). We found only 50% stability 
on classes of procedures, which is far beyond random coincidence; but still rather 
weak. 

For the direct proportion we also found different classes of procedures. Most 
errors involved partially correct procedures that were not carried out to the 
solution. The stability was quite good for one of the correct procedures, which 
had the easiest physical meaning, and comparatively weak for the others. 

As for the double proportion, we found better performance in relation to the 
time factor. Both consumption of coal and production of milk are conceived as 
proportional to time, even though the other factor involved (number of radiators, 
number of cows) did not appear to be difficult. 

Another finding of this experiment was that most procedures used by students, 
even when they were wrong, had a physical meaning. We very rarely found 
meaningless calculations. 

A Variety of Procedures for Rule-of• Three Problems 

The experiment (Vergnaud, Rouchier, Ricco, Marthe, Metregiste, & 
Giacobbe, 1979; Vergnaud, 1980) was designed to test the hypothesis of a better 
availability of scalar procedures compared with function procedures. It also 
pennitted us to make an extensive description of procedures (correct or incorrect) 
used by students. The problem was the following: 

"In a hours the central heating consumption is b liters of oil. What is the 
consumption in c hours?" (See Schema 5.20.)
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By choosing adequate values for a, b and c, it is possible to simplify either 
the scalar ratio (�) or the function ratio (!), or both, or none. 

In order to test the hypothesis that scalar procedures would be more easily 
and frequently used than function procedures, we used problems with a simple 
scalar ratio (3 or 4) and a complex function ratio (12, 13) and problems with a 
simple function ratio and a complex scalar ratio. This was done for 
multiplication and division, resulting in four cases in all. (See Schema 5.21.) 

We used a total of 16 problems. Examples are as follows. (See Schema 5.22.) 
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We counterbalanced the order of the four problems that each student had to 
solve. Four groups of 25 students each (one group for each secondary 
compre• hensive school grade, from 11-12-year-olds to 14-15-year-olds) 
participated io the experiment. 

According to our hypothesis, we expected S
I to be easier than S

2
, and S3 to be 

easier than S4• We also expected to find differences in the use of the different 
possible procedures. We also meant to describe the evolution of success rates 
and procedures along the four grades of early secondary �hool. 

Table 5. l shows very clearly that there is no difference between the SI and S2 
problems. This result contradicts our hypothesis that an easy scalar ratio would 
enable children to solve S1 problems more easily than S2 problems (easy function 
ratio). 

The situation is different for S3 and S4. Whereas S3 problems are mastered 
nearly as well as S I and S2, there is a big drop in the success rate for S4. 

Unfortunately, this drop may be due to two different factors: the difficult scalar 
division on one hand, and the fact that S4 is the only situation where fix) < x (as 
can be seen in the numerical ex.amples above). 

One interesting thing is the regular, slow evolution from younger students to 
older ones. This shows that a psychogenetic approach is useful in studying the 
acquisition of mathematical skills at the secondary school level. Even when these 
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skills are taught, the development is slow, and it takes students a few years to 
deal successfully with the different numerical cases. Some students still fail to 
handle the simplest situations even at the end of early secondary school, but most 
of them progress regularly. The most difficult case used here, which is not the 
most difficult that one can meet, even with whole numbers, is mastered by a 
majority of students only at the last early secondary school level (14-15-year
olds). 

Procedures 

More interesting is the variety of procedures we observed (over 25 kinds used 
by students). We classified correct procedures into five subcategories; we tried to 
classify incorrect ones into meaningful subcategories, but this was not always 
possible. 

In the following description, we use letters a, b, c and x: a and c are tiroe
measures, b, and x are consumption measures as shown in Schema 5.23. 

Correct Procedures 

S Scalar: The student calculates (cla = >..) (in S1and S2) or (ale = >..) (in 
S3). This calculation can be made explicitly either by dividing or by 
using the missing factor procedure (see Schema 5.23). It can also be 
performed mentally. Afterwards, the student calculates x = >.. X b or
x = b x >.. (in S1 and S2) or bl>.. (in S3).

F Function: The student calculates (bla = >..) (in S 1and S2) or (alb = >..) 
(in SJ, either explicitly or mentally and then x = A x c (S1 and S2) or 
c/'11. (S4). 

U Unit value: The student perfonns the same calculations as in F, but he 
explains that (bla) is the unit value .f{.l) .  This procedure is scalar in 
character, although the calculations are the same as in F. (See Schema 
5.24.) 
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R Rule of three: The student calculates (b x c)la or (c x b)la (multiplica
tion first). This welHcnown algorithm is rarely used. We explain why 
later. 

SD Scalar decomposition: The student tries to decompose magnitude c as a 
linear combination of different other magnitudes: multiples of a or frac
tions of a. 

Example: a = 32, b = 8, c = 104 (boy; 14 years old) .

Protocol Comment 
32 X 3 = 96 + 8 = 104 104 = (3 X 32) + (¼ X 32) 

{J,
86 = 24 liters + ¾

= 26 liters 
X = (3 X 8) + (¼ X 8) 

= 24 + 2

Although the equations in the protocol are all wrong, the procedure is 
efficient and shows the use of a powerful theorem (see comment): 

(ft>..a + X'a) = ">,..j{a) + X'j{a) 

This procedure is very often used by students (even at the primary school 
level) when they cannot think of the function-operator. The decomposi
tion can also be multiplicative: 

f(.),.'Jt..'a) = >,.'J,..'f(a) 

The properties of numbers are of c9urse very important in the emergence of 
such procedures but it is also important to notice that these procedures cannot be 
explained by pure numerical properties. Numbers are magnitudes. As. a matter of 
fact, if the numbers did not represent magnitudes of qualitatively different types 
of quantities, then one should also find function decomposition procedures (b = 
>.a + A' a). This is never the case; b cannot be conceived as a linear combination 
of magnlrudes of a different kind. 
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Incorrect Procedures 

Many incorrect procedures are based on some aspects of the indicated real 
situation. We thought it might be interesting to cJassify these incorrect pro
cedures in order to see what sort of features were the most salient. 

S Erroneous scalar: The student uses a scalar ratio or difference, either 
(c/a) or c - a or (ale) or a - c, and either gives it as an answer, or 
multiplies it by b, or adds it to b, or divides b by it, or subtracts it from 

b. 

Example: a = 1, b = 21, c = 84 (girl; 16 years old).

84h - 1h = 77 h

The consumption is 77 x 21 liters = 1617 liters. 
We also considered that multiplying b by an arbitrary number, approx
imately equal to cl a, could be classified in this category. 

F Erroneous function: The student uses a function ratio or difference, 
either (bla), or b - a, or (alb), or a - b, and either gives it as an answer 
or applies it to c. 

S'F' Erroneous scalar and function: The student makes a calculation b x c, 
forgetting or cancelling division by a or makes a combination of er
roneous scalar and function operations. 

Example: a = 8,
Schema 5.25.) 

b = 32, c = 104 (girl; 13 years old). (See 

In 104h. , the conswnption is 52 litres. 
I Inverse: The student uses the inverse ratio ale instead of cla, or c/a 

instead of ale, or b/a instead of alb, etc. 

Example: a =  21,  b = 1, c = 90 (girl; 14 years old).

21:7 = 3 
90 X 3 = 270 liters. 

P Err'oMous product: The student multiplies c and a, or b and a, which 
has no physical meaning at a1L 

Q Erroneous quotient: The student divides c by1b, or b by c, which again 
has no meaning. 

U Others: Procedures that could not be classified elsewhere. 
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Looking at these incorrect procedures, one can see some differences. Er
roneous scalar and function, and inverse procedures are Jess "silly" than er
roneous products and quotients. One can make better sense of them. Comparing 
two magnitudes of the same kind by looking at the difference c - a instead of the 
ratio c/a also makes better sense than looking at b - a instead of b!a. 

Table 5.2 shows the distribution of procedures on each problem-structure for 
all grades toge1her. The most s1riking fact is that scalar procedures are more 
frequently used than are function procedures, even for problems in which the 
function-operator is very simple (S2 and S4). This is true for procedure S alone, 
but it is still more striking if one considers S,  V,  SD and S' together, compared 
with F, FD and F'. 

This fact has been found or observed by other authors (Freudenthal, 1978; 
Lybeck, 1978) and discussed by others (see Karplus, chapter 3, this volume. 
Noelting, 1980 a,b) under the distinction between Within ratios and Between 
ratios. The discussion may be confused if one mixes up problems of comparison 
and problems of calculation, in which the answer is a certain magnitude. I return 
to this point when considering problems of fractions and ratios. For the time 
being, I just stress the convergence of Lybeck's (1978) results with ours, and the 
fact that the analysis in terms of isomorphism of measures is the most powerful 
and the most general one. 

TABLE 5.2 

Distribution of Procedures for Rule-of-Tltree Problems (%) 

Problems 

Procedures s, S2 S3 S4 

Correct 
S Scalar 41 32 38 16 
F Function 1 1  14 6 8 

U Unit value 9 14 10 5 
R Rule of three I 2 I 

SD Scalar decomposition I 0 0 4 
FD Function decomposition 0 0 0 0 

Incorrect 
S' Erroneous scalar 8 6 20 5 
F' Erroneous function 0 I 4 10 

S'F' Erroneous scalar and function 10 9 0 5 
I Inverse 2 2 I 1 1  
P Erroneous product 3 4 I 3 
Q Erroneous quotient 3 4 2 I 

0 Others -1.! ..n -1§ .l.! 
100 100 100 100 

I 
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Another striking fact is that only I% of the students use the rule-of-three
algorithm. This also has been found by others (Hart, 1981), but it must be 
explained. My view is that it is not natural for students to multiply b by c and 
then divide by a if one considers b, c and a as magnitudes. It is fair to do this in 
the set of numbers because of the equivalence of different calculations (b x c)I a,

cla x b, bla x c. But children do not think of b, c and a as pure numbers. They 
see them as magnitudes and there is no meaning for them in multiplying b liters 
of oil by c hours, whereas they can more easily figure out scalar ratios c!a or 
even function ratios bl a. 

We also found that the older students, although they had studied the linear 
functionftx) = ax and the proportion coefficient, used the scalar procedure (in its 
different versions S, V, and SD) more often than did the younger students. For 
details on the first ideas of children on linear functions, see Ricco, 1978. 

Volume: A Difficult Concept 

This experiment, which was completed recently and will be published with 
more details at a later date, consisted of 80 individual interviews with secondary 
school students: 10 boys and 10 girls in each of the four grades, from 11-12 to 
14-15-year-olds. Its aim was to obtain a varied and meaningful picture of stu
dents' skills and representations so as to be in a better position to make a series of
didactic situations on volume for seventh graders ( 12-13-year-olds). Most of the
questions concern trilinear properties of volume but we also tested the availabili
ty of the formula for parallelepipeds, and tried to obtain definitions of volume.

Because we intended to explore aspects varying in complexity, we used a 
branching program of items, posing more difficult questions to successful stu
dents and easier questions to those who had failed. 

THE INTERVIEW 

The interview started with the estimation of the volume of an aquarium, placed 
on the table. The student could use a meter stick to measure the dimensions of the 
aquarium, which were not given. We recorded what dimensions he (or she) did 
actually measure, and the sort of calculations he  (or she) perfonned. The student 
was then asked to estimate the volume of the classroom (rectangular); no dimen
sions were given. We were not so much interested in the estimation of length, 
width, and height as in the calculations. The students were asked to explain how 
they arrived at their answers and were also asked, "What is volume for you?" 
This could also be repeated as, "If you had to explain to a younger fellow, what 
would you tell him?" 

Students who failed to find a correct multiplicative calculation for the aquar-
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ium and the classroom were then asked a simpler question with blocks. A large 
quantity of blocks was displayed on the table, and then was hidden away in the 
experimenter's bag. The student was asked: "How many blocks should I give 
you, for you to make a straight box, as full as a box of sugar pieces, 3 blocks 
wide, 4 blocks long and 2 blocks high?" This item was obviously aimed at 
helping students find the correct calculation by using the blocks as a model 
(paving space with unit blocks). 

Students who did not succeed on these items did not continue. The others were 
then asked the following problem: "Mr. Dupont has a small aquarium in his 
kitchen, and a large one in his den. The den one is twice as long, three times as 
wide and twice as deep as the kitchen one. How many times is the den one larger 
than the kitchen one?'' We recorded the answers and the explanations. 

There were two more items on the trilinear aspects of volume: 

1. Two spheres (D = 4 cm and d = 2 cm) were shown, and the first question
was: "How many times is the volume of the big one larger than the volume of 
the little one?'' The second question concerned the weight. The student was then 
given several little spheres and a plastic toy scale. The big sphere was placed on 
one plate: "How many little ones should you put on this side to get the equi
librium?" (All spheres were solid and made of the same wood.) 

SCHEMA 5.26 

2. An L-shape, made of 4 blocks (see Schema 5.26), and an enlarged ver
sion of the same shape (twice as long, twice as wide, twice as thick) were shown. 
The little L was pennanently on the table; the big one was shown and immedi
ately hidden. The question was: "How many blocks are there in the big L ?'' 
The difficulty of this item was expected to be intermediary between the two
aquarium item and the sphere item. 

Finally a question was asked on division: "The volume of a box is 60 blocks. 
It is 3 blocks wide and 4 blocks high. How long is it?'' 

RESULTS 

The response patterns are compatible with the hierarchy of items summarized 
in Schema 5.27. 

Notice that 19 students failed completely and that only a small minority were 
able to handle trilinear aspects of volume. Most students just used the'formula for 
the calculation of the volume of parallelepipeds, or were reminded of it through 
the. block model. Only 4 students were successful in the sphere item

'. 
and_ the L-
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item was also very difficult. There was no difference between the two first items; 
it was not easier to calculate the volume of the room in cubic meters with small 
numbers (6 x 4 x 3) than the volume of the ,aquarium in cubic centimeters with 
larger numbers (40 x 17 x 20). 

Most 11-12-year-olds failed completely, but there were also total failures 
among older students. The jump is important from 11-12 to 12-13-year-olds 
(volume is taught again to 12-13), but the two-aquarium item was very difficult 
until ninth grade. Although volume is not taught any longer after the seventh 
grade (12-13) and is supposed to be well known by students (which is not the 
case), some skills go on improving, sl&;iwly. 

We classified answers and procedures used by students and found again, in 
the direct calculation of volume, the perimetric representation, the area 
representation, and the mixed representation that we had already observed 
in the first experiment. This was even the case with the block item; many 
young students made drawings in which perimetric and area models appeared 
clearly (Schema 5.28). 
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SCHEMA 5.28 

Gerard Vergnaud 

E§ EHE E§ 
EHE 

The perimetric representation disappeared completely in the last grade, but 
this was not the case with the area representation: confusions between area and 
volume seem to be long lasting. 

The stability of the procedures used for the calculation of the volume of the 
aquarium and of the classroom was quite good (75%). An expected finding was 
that some students could not express their results in cubic meters or centimeters, 
but would express them as meters or centimeters, or even centiliters. 

The definitions of volume were varied. It is difficult to translate into English 
the exact wording of students. Table 5.3 is an attempt at such a translation. It 
shows a very interesting variety of definitions and also a good evolution from 
perimetric to volumic representations. 

The two-aquarium item produced interesting results: out of 39 students who 
responded to the item, one finds 17 correct responses: IO students gave the 
answer, 2 x 3 x 2 = 12; 4 students paved the big aquarium mentally with the 
little one; and 3 students attributed hypothetic dimensions to the little one, 
calculated the dimensions of the big one, the volume of both, antl then the ratio. 
This last "detour" shows how conceptually difficult it is to compose ratios in 
this structure. 

Of the 22 incorrect responses, 9 students gave the additive answer, 2 + 3 + 2 
= 7; 3 students gave the "average" answer, "between 2 and 3;" and 1 student 
gave the modal answer, 2. Other students either tried a good procedure but got 
mixed up, or repeated the information given by the experimenter, or decided that 
it was impossible to say, because "one did not know the measure of the little 
aquarium. ' '  This very last answer confirms the conceptual difficulty of compos

. ing ratios in the absence of any information on the associated magnitudes. 
As we expected, the sphere item was very difficult. One interesting fact was 

that students who gave the correct answer, after having hesitated for a while, 
used the gestural metaphor of putting together little spheres to fit the space 
occupied by the big sphere. This is of course a pure metaphor, borrowed from the 
cube model, but it does help. The most frequent incorrect answers were 2 and 4, 
as expected. The answers for the weight were not any different from those given 
for the volume; the students were deeply surprised when they discovered that 8 
little spheres were necessary to make the equilibrium. None of the 19 subjects 
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that had given a wrong answer was able to explain correctly this astonishing fact: 
they used ad hoc explanations (for instance: multiplication of D by d) or refused 
to make any comment. 

For the l-item, most students tried to imagine mentally the Big L and to 
count the blocks; most of them failed. Only four students attempted to compose 
directly the similarity ratio; one of them failed. 

In conclusion, most students do not master the simplest elementary tiilinear 
properties of volume, in the case of the parallelpiped, until the ninth grade 
{14-15-year-olds). Only a few of them can understand more difficult cases (L
item and sphere). Even the direct calculation of volume or the inverse calculation 
of one dimension knowing the volume and the other dimensions are still difficult 
for 13- to 15-year-olds, although they have been taught it. The multiplicative 
three-dimensional model contradicts more "natural" models such as the perim-
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etric model and the area model. It is important to help students overcome these 
models and differentiate them from one another and from volume ideas. The 
difficulty of the concept of volume is considerably underestimated by teachers 
and programs, certainly in France. Volume is a good example of what was said 
in the introduction to this paper about how concepts develop over a long period 
of time. 

Didactic Experiments 

In the short space available in this chapter, I can only illustrate with a few 
examples the kind of experiments that we have developed inside the classroom. 
We usually have two aims: (a) to'improve students' knowledge and know-how; 
(b) to make reliable observations and discover didactic facts, that is, facts con
cerning transmission and acquisition of knowledge.

The first important part of our work consists of arranging a series of didactic 
situations and making as explicit as possible both our didactic objectives and our 
hypotheses about what might happen. All members of the research team (mathe
matics teachers, psychologists, and mathematicians) participate in the choice of 
conceptions and ideas, and in the choice of situations (context, values of the 
different situation variables, order of problems, allowed suggestions, and so on). 
For instance, in the didactic sequence on volume, d�scribed below, we explicitly 
meant to start from a unidimensional conception of volume, as a quantity that can 
be compared and measured directly, to arrive at a tridirnensional conception of 
the volume of parallelepipeds and prisms (see Rogalski, 1979; 1981, pp. 
120-125, for interesting results). We also considered two important intermedi
ary steps: the paving of  the parallelepiped (as a natural transition from the
unidimensional to the tridimensional conception) and the differentiation between
volume, lateral area, and edge-periphery of a building (see the architect's prob
lem). We also organized deliberately different difficulties and jumps in the
questions posed to students.

But, before describing any situations or results, I need to clarify a few meth
odological points. 

All situations are carefully described and written down for the teachers and the 
observers, with the different phases of each 50-minute lesson, the formulation of 
questions, and suggestions authorized to help students. This is the sort of care 
taken by psychologists when they interview subjects; although it is impossible to 
copy that model, we find it necessary to get as close to it as possible. 

Students are usually divided into groups of four. Most of the lesson time is 
devoted to small group work. At some previously detennined moments, explana
tions to  the whole class are delivered, at the blackboard, by students representing 
their group, or by the teacher. During these phases, the different group conclu
s1ons are summarized and new questions raised. 
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When a series of 50-minute lessons has been programmed, it is run (with
minor changes) in different classes to permit comparisons and the discovery of 
recurrent facts. By different c/,asses we mean different classes of the same grade, 
and eventually classes of different grades. In each class, one group is perma
nently video recorded whereas (most) other groups are watched by one ''ob
server" each. The observer tries not to intervene, but still does help the group 
when necessary. After each lesson, observations are discussed. The whole-class 
work phases are also video recorded. 

One of the aims of such complex experiments is to observe regularities and 
establish and interpret reliable didactic facts. Pretest-posttest evaluations can 
also be organized, but this is not essential to the methodology. 

AN EXAMPLE; A DIDACTIC SERIES ON VOLUME FOR 
SEVENTH GRADERS 

Volume is a geometric-physical magnitude that can be, in certain cases, 
directly compared and measured. For instance, bottles, glasses, cups, vases, and 
other kinds of containers can be compared. This is not a difficult job for children . 
More difficult is the comparison of full volumes, such as stones, pieces of 
plasticine, or complex block shapes like those used in this experiment, and the 
comparison of full volumes with hollow volumes, or containers. These compari
sons must usually be achieved with the help of some liquid (water, for example), 
and involve indirect comparisons. 

In the first lesson, each group had first to compare four containers and to order 
them, A < B < C < D. Because these containers had been cut from tops and 
bottoms of different plastic bottles, the order was not obviously perceptible and 
students had to fill them with water to decide. During this phase we observed that 
although the task was easily done by seventh graders, the transitivity axiom was 
not always used and some redundant comparisons were made. 

Each group was then given two full ·volumes, a block shape, and a plasticine 
one and had to place them in an ordered series: 

Either E and H such that E < A, C < H < D 
or F and G such that A < F < B < G < C. 

The group sometimes had difficulties comparing full volumes with each other, 
and had even greater difficulties in comparing them with hollow volumes. The 
reason for these difficulties is the fact that such comparisons require complemen
tary volumes and reasoning on complements. If f is put into X, and then G into X 
(X being a large container filled with water), then from X - G < X - F the 
correct conclusion is F < G, not F > G. 

Still more difficult is the comparison of a hollow with a full volume, B and F 
for instance, because one may have to find a liquid equivalent of F by comple-
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menting X - F to X ( double complement), or by reasoning on levels of water in 
X and planning a sequence of actions and measurements that is sometimes too 
complicated for the group, especially if two students have different plans. The 
protocols cannot be described in detail here, but we were struck by the unex
pected difficulty of the task. Some children did not even bother to keep F totally 
under water, and drew inadequate conclusions because of this faulty procedure. 
In one class, no group was able 10 give a correct ordered series of full and hollow 
volumes. In other classes it was difficult for most groups. The task was easily 
done in only one class. Clearly for seventh graders (and probably for older 
students), the results show the relevance of this kind of situation and type of task. 

In the second lesson, children were asked to measure all volumes. There are 
several ways of associating a number with an object. The volume formulas are 
one way to do it. In this lesson, a more direct method was used: two different 
capacity units were used for containers, different groups using different units. A 
natural solid unit (the block unit) was used for the block shapes E and F. It is 
fairly easy to count the number of capacity units in a container or to count the 
number of blocks in a block shape. More difficult is the association of a number 
of capacity units to full volumes or a number of blocks to containers and to 
plastkine shapes. These tasks involve either reasoning on complements or solv
ing rule-of-three problems. So there are three different units: two liquid units, u1 
and u2,and the block unit, u3, related as follows: 

2u1 = 3u2 

u1 = I8u3 

These equivalencies were not given and had to be discovered by students during 
the phase of calculation of the value of each volume in each unit system. The 
only way to complete this task is to find a common reference point same volume 
measured wilh different units. This is not difficult for the first equivalency and 
for containers A, B, C, and D because the containers are the same in all groups 
and can be easily measured with u 1 and u

2
• lt is much more difficult for full 

volumes and for u3 measures. 
Table S .4 summarizes the situation; it is a table of proportional numbers in 

which students have to fill empty squares. This table is not given to the students; 
it is drawn at the end of the second lesson, or at lhe beginning of the third lesson 
to summarize the results. Some scalar and function procedures used by students 
to calculate u1 and u2-measures of A, B, C and D are also described: (a) scalar 
procedure: Suppose you know that m

1
(A) = 6, mi(A) = 9 and m1(D) = 12;

because D is twice as big as A, then mi(D) = 18; (b) function procedure: because
f1½(A) is U times as much as m1(A), then mi(D) = 12 x ( l½) = 18. The above
procedures can also be expressed in terms of column-to-column operators or line
to-line operators in the table. 

Thf': aim of the,. next two lessons was to help stude.nts move from a unidimen-



5. Multiplicative Structures 157 

TABLE 5.4 

Measures of Recipients A. B, C. and D 
and Full Volumes E and F 

E A F B C D 

u, 6 8 10 12 
U2 9 12 IS 18 

U3 72 126 

sional conception of volume to a tridimensional one, to coordinate both concep
tions, to compare different ways of paving and different sorts of elementary 
units, and to analyze the meaning and the homogeneity of the formula. 

Two parallelepipedic boxes, A (180 X 120 X 60) and B (180 X 90 X 75), 
were used. Large numbers of two sorts of elementary units were provided: small
parallelepipeds (30 X 20 x 15) and small cylinders (d = 15; h = 30). Measures
were expressed in millimeters. They were not given to students. 

Students were asked to measure and compare A and B. The idea is that both 
kinds of elementary units may be used, but that cylinders do not occupy all 
empty space and that Box B cannot be regularly and completely paved in all 
directions whereas Box A can. Further, the complete paving of A and B takes a 
long time, which can be saved by counting the number of elements that can be 
put in the length, in the width, and in the height, then multiplying. Finally, cubic 
units are indifferent to the orientations and optimize the procedure. This last idea 
is then tested with blocks of I cc. Although a large number of such cubic blocks 
was provided to each group, this number is not large enough for the complete 
paving of Boxes A and B, and the use of the formula is then unavoidable. The 

· complete paving would take too much time anyway.
In a later phase, questions were raised concerning enlargement of paral

lelepipedic volumes by a ratio of 2, 3, or IO on lengths-23, 33, and 103 on 
volumes)-and concerning all different possible combinations to make a paral
lelepiped of 24 blocks, or 48 blocks. 

We observed most interesting behaviors during the paving process. In starting 
to work, many groups did not even think that it would save time not to pave 
completely Box A and Box B (they probably enjoyed paving the boxes). But 
unexpectedly, we also found groups that did not even find it necessary to make 
their paving regular; they would pave one line in length, then one line in width, 
along the same dimension of elements (see Schema 5.29 for examples of non
canonic pavings); or they would try to fill the box as completely as possible by 
paving the box with several lines regularly displayed and one more line differ
ently organized. This of course does not allow them to make any simple multi
plicntivc calculotion. 
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Another interesting cognitive conflict occurred when the students tried to 
count the number of parallelepipeds in the length, in the width, and in the height. 
Beside the fact that they might arrange the elements along the length in all .three 
dimensions, as mentioned above, some students were faced with the contradic
tion between the additive direct conception of volume and the multiplicative 
tridimensional conception. This contradiction was made especially obvious by a 
block-in-the-comer incident that took place in many groups. It usually 
appeared as a conflict between two members of the group, one of them 
saying that the block-in-the-comer should not be counted twice: "as it has 
been counted in the length, one should not count it in the width, or in the 
height,'' the other member of the group saying (without always being able to 
explain why) that it should be counted in the length, in the width, and in the 
height. The first position results from an additive direct conception of volume 
(in which it is actually true that the same partial volume cannot be counted 
twice), and the second position is associated with a multiplicative conception, 
in which blocks along the length, width, or height are not volumes but instruments 
to measure length, width, and height. The first conception is also reinforced by a 
perimetric view of volume as a composition of edges. This conflict, observed 
many times in different groups and different classes, is typically a didactic 
fact, due to the situation in which both unidimensionaJ and tridimensional 
conceptions can be used. We would not have expected it to arise naturally in 
groups of 12-13-year-olds. 

We also observed interesting behaviors mentioned before in the experiment on 
volume, concerning enlargement by a similarity ratio of 2, 3, or 10. 

In the sixth lesson, the architect's problem was posed to students. In this 
problem, students were supposed to calculate different interesting magnitudes in 
a building. The base was either a rectangle (35 x 16) or a square (20 x 20) and 
the total area available for offices and apartments was known (5600 m2). The 
height of each floor was given (3 m). The architect had to calculate the height of 
the building; the later-al area (that would be covered with glass); the total length 
of edges, except the base (aluminium devices were supposed to be fixed along 
the edges); and finally the volume (for the heating capacity). The aim of this 
problem was to oblige students to differentiate distinct kinds of perimetric, 
volumetric, and area magnitudes. The main obstacle for students was that the 
building's capacity (volume. in a way) was �cr1rnlly given through the intermedi-



5. Multiplicative Structures 159 

ary of  the total area available for apartments and offices. As a consequence, the 
number of floors was sometimes interpreted as the height of the building. The 
calculation of the lateral area was not very easy either, and some students tried to 
calculate it directly with the basic area or the total area available. The question 
about edges was, as expected, the easiest one. As�for the volume, ·most groups 
did find it, but only one of them used the synthetic infonnation: area available, 
5600 m2; height of each floor, 3 m. The other groups used the formula 

L X W X H. 

The last lessons were devoted to the study of triangular prisms, all having the 
same height and different base areas. In the first phase, students had to cut 
different bases from pieces of cardboard (8 cm or 16 cm wide) and to predict 
(before making them) the ranking order of the prisms built on these bases (six 
different bases, including equivalent-area bases). The prisms were then made, 
and sand was used to check the predictions. In order to explain the differences 
and the equivalencies, the concept of basic area was analyzed. To double the 
basic area, one can use twice the same area, or double the height of the triangle, 
or double the base of the triangle. A double-dependence table was drawn for the 
area of triangles and then for the volume of prisms (Schemas 5.30a and 5.30b). 

( a) area of the triangle 

Students worked on the first table and on the fonnula A = 1/2 BH by filling 
different cases. Their attention was drawn to the proportion between area and 
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height (when base is held constant) and between area and base (when height is 
held constant). There are different possible procedures for the calculation of 
unknown cells: either the use of the fonnula or the application of adequate 
operators to previously known cells. Similar work was done on the second table. 

Although all of these situations and behaviors deserve more detailed descrip
tions and explanations to be thoroughly understood, this chapter on multiplica
tive structures would have been very incomplete if this type of didactic experi
ment had not at least been briefly reported. Other didactic experiments are 
discussed in two previous papers (Rouchier, 1980; Ricco et al., 1981; Vergnaud 
et al . •  1979). 

Further Analysis and Experiments 

As discussed in the first part of this chapter, problems met in ordinary eco
nomical and technical life involve different kinds of magnitudes and different 
categories of relationships. Asking students to solve such problems requires them 
to use logically distinct but psychologically interdependent topics in mathemat
ics. Studying these topics in isolation is psychologically artificial. This is not 
specific to multiplicative structures: most didactic situations are conceptually 
pluridimensional. Three complementary approaches seem to be essential in this 
case: (a) fractions, ratios, and rational numbers, (b) linear and n-linear function 
with dimensional analysis, and (c) vector spaces. 

Fractions, Ratios, and Rational Numbers 

It is clear that multiplicative structures, because they imply multiplications and 
divisions, can be analyzed in a way that leads to fractions, ratios, and rational 
numbers. The main problem for students is that rational numbers are numbers 
and that entities involved in multiplicative structures are not pure numbers but 
measures and relationships. 

The concept of rational number is defined, in mathematics, as an equivalence 
class of ordered pairs of whole numbers. This is a late construction in the history 
of mathematics. Fractions and ratios are not so well defined: the word fraction is 
sometimes used for a fractional part of a whole, sometimes for a fractional 
magnitude (that cannot be expressed by a whole number of units), sometimes for 
an ordered pair of symbols plq, and sometimes for a relationship linking two 
magnitudes of the same kind. Fraction is rarely used for a relationship linking 
magnitudes of different kinds; the words ratio and coefficient are preferred. But 
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ratio is also used for a relationship linking magnitudes of the same kind, and for 
an ordered pair plq. 

It would be futile to try to standardize the vocabulary. But as students' concep
tions of rational numbers necessarily come from their conceptions of fractions 
and ratios, it is important lo try to sort them out, in the light of our first analysis 
of multiplicative structures. Although decimals are very important in the devel
opment of rational-number concepts, I will not devote any special attention to 
them here. Brousseau ( 1980; · 1981) and Douady ( 1980) have made very interest
ing contributions to the study of decimals. 

THEORETICAL CONSIDERATIONS 

Sharing a whole into parts is undoubtedly the very first experience with frac
tions. It involves a direct proportion between shares and the magnitude to be 
shared (isomorphism of measures). This magnitude can either be discrete (a set 
of sweets, a packet of playing cards) or continuous (a pie, a sheet of paper, a 
bottle of lemonade). An important difference is that one does not usually know 
the measure of the continuous magnitude to be shared (neither the weight nor the 
area of the pie) whereas a discrete magnitude can usually be counted. Conse
quently, the unit value ( one person's share) is necessarily expressed as a frac
tional quantity (one-fourth, one-sixth) in the continuous case, whereas it  may 
also be expressed as a number of elements (three sweets each) in the discrete 
case. (See Schema 5.31.) 

The first type of division, mentioned in the description of the isomorphism of 
measures structure above, can easily be recognized in the discrete case (first and 
last columns) but it is not so easily recognized in the continuous case, or when 
one considers the discrete set as a whole (second column). In these latter cases, 
children have to recognize that sharing a whole into four parts, for example, 
requires dividing the unit 1 by 4. (See Schema 5.32.) 
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This is a problem for elementary school children. Whereas whole numbers 
can be directly associated to quantities by counting, fractions (even the most 
elementary ones, 1/n) cannot be associated directly to quantities; they are 
relationships between two quantities. This conceptual difficulty may be 
different for continuous and discrete quantities, and for different numerical 
values, as we will see later. 

Once unit fractions have gained meaningfulness for children through sharing 
operations, many further steps remain for thorough understanding. We describe 
these steps in terms of non-Archimedean fractions plq, smaller or bigger than 1, 
and equivalence relationships, and operations. The main conceptual problem for 
students is that fractions can be quantities, or scalars, or functions, and that these 
different concepts have to be integrated into one synthetic mathematical concept: 
the rational-number concept. 

Because fractional quantities and magnitudes cannot be conceived without the 
help of scalar oper-ators, I will start with this concept. As a scalar operator, a 
fraction links two quantities of the same kind. Being a quotient of two quantities 
of the same dimension, expressed in the same unit, it has no dimension and no 
unit. The problem of linking two quantities is raised either in comparisons 
(which quantity is bigger and how much bigger is one than the other?) or in 
proportional reasoning, as seen in the preliminary analysis above. Actually, 
comparisons do not necessarily involve fractions and ratios; differences 
(obtained by subtraction) are also appropriate in many comparison situations. 
In proportional reasoning, students must move from an additive method of 
q>mparing to a multiplicative one. Incidentally, this probably explains the 
well-known additive error in proportion tasks (Karplus & Peterson, 1970; 
Lybeck, 1978; Noelting, 1980a,b; Piaget, Grize, Szeminska, & Bang, 1968) 
and some other sophisticated errors (see enor S' in the rule-of-three experiment 
described above). 

Schema 5.33 shows examples of scalar operators (whole and fractionary) from 
the simple multiplication and division cases to more complex cases (reducible 
and nonreducibie ones). 

There are two categories of ratios in comparison and proportion problems: 
either one quantity is part of the other (inclusive case) or there is no obvious 
inclusion relationship (exclusive case). 
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1 . Inclusive examples: p out of q. Peter ate two-fifths of the sweets. Three
fourths of the marbles are blue. 

2. Exclusive examples: p to q. Peter's collection of miniature cars is three
fourths of John's collection. The distance covered in 5 hours is five-thirds
of the distance covered in 3 hours. 

There are some important differences between these categories: 

1 .  Inclusive fractions or ratios are always smaller than 1 (except when the 
magnitude or the set is compared to itself), whereas exclusive fractions or 
ratios can be greater than, less than, or equal to l .  

2. Inclusive fractions are never reducible to whole numbers (except to l in the 
trivial case), whereas exclusive fractions can be either reducible or non
reducible (see examples in the previous schema. 

3. Inclusive fractions have no inverse (for young students) because it is mean
ingless to consider the whole as a fraction of the part, whereas exclusive
fractions have "natural" inverses: if Peter's collection is three-fourths of
John's, John's collection is four-thirds of Peter's.

4. Inclusive fractions can be made meaningful to young students either by
sharing operations, or more generally by subset-set proportions, whereas 
exclusive fractions necessarily involve comparisons.
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Most children, at the end of elementary school, are unable to conceive exclu
sive fractions as fractions. Their model is the inclusive fraction model. This is a 
problem because comparisons and ratios between any two quantities of the same 
kind are a more powerful model than inclusive fractions, providing a more 
general foundation for scalar operators or ratios. 

Fractional measures result from the application of fractional operators to other 
measures considered as wholes or units, in the nonreducible case. For example: 

I. 3/ IO cm is a fractional measure that results from dividing l cm into 10
parts and taking 3 parts, or else taking three-tenths of l cm.

2. 5/3 of 205 kms (1025/3) is a fractional measure of the distance covered in
Sihours, that results from applying 513 to the distance covered in 3 hours.

Nonunit fractional measures (i.e., plq), like unit fractional measures (i.e., 
1/n), are necessarily relationships to other measures, via scalar ratios. But frac
tional measures can be added and subtracted, whereas scalar operators can only 
be composed in a multiplicative fashion. 

Fractional scalar operators pl q are themselves the concatenation of one divi
sion by q and one multiplication by p, and all fractional scalar operators can be 
concatenated and composed into one single fractional scalar operator: 

(X plq) o (X p'lq') = ( ><  pp'lqq') 

Addition and subtraction of fractional scalar operators are nearly meaningless. 
The situation is not quite symmetrical with fractional measures, because they 

can be, most obviously, added and subtracted, but they can also be multiplied (or 
divided) by one another, when the structure is a product: "find the area of a 
rectangle that is 8/3 cm long and 4/7 cm wide." 

Next, let us consider function operators. They are quotients of dimensions, 
and they raise conceptual difficulties for students. Nevertheless they provide the 
most natural way to introduce the concept of an infinite class of ordered pairs, as 
can be seen in Schema 5.34 taken from the wheat- flour problem. 

Kg of wheat Kg of flour 

1.2 

12 JO 

18 15 

24 20 

30 25 

6n 5 n  

6 5 

SCHEMA 5.34 

1 
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If 1.2 kg of wheat is used to make 1 kg flour, one can establish a correspon
dence table between 12 kg wheat and 10 kg flour, 18 and 15, 24 and 20, and so 
on. All ordered pairs (6n, Sn) belong to this infinite class; the function from left 
to right can be ex.pressed by any operator x 10/12, x 15/18 . . . .  The simplest 
operator is x 5/6 and (5,6) is the simplest element of the class of ordered pairs. It 
is also possible to exhibit the equivalence of scalar operators, but the infinite 
character of the class is not exemplified. 

In conclusion, it appears that the meaning of concatenation of division and 
multiplication comes from fractional scalar operators and ratios, the meaning of 
addition and subtraction comes from fractional quantities, and the infinite char
acter of each rational-number class comes from fractional function operators and 
ratios. Multiplication of rational numbers can be made meaningful through com
position of scalar operators, composition of function operators, and even product 
of measures. The synthesis of all three aspects can occur only if measures, scalar 
operators, and function operators lose their dimensional aspects and the distinc
tion between element and relationship, and if the concept of rational numbers as 
pure numbers is built up. But this concept inherits all three aspects. Teachers 
should not expect this construction to be easy, fast, or immediately understood 
by students. Students cannot work on meaningless objects and one should not be 
sutprised when they try to make pure numbers meaningful by interpreting them 
as quantities or operators. 

The above analysis is convergent with Kieren's (1978-1979-1980) analysis, 
although it was developed quite independently. The main originality of this 
analysis is that it is strongly related to the general framework of multiplicative 
structures, in a way that clarifies differences between quantities and operators 
and between scalar and function operators. 

SCALAR VERSUS FUNCTION 

The distinction between scalar and function aspects has been mentioned by 
other authors, but it may be very ambiguous in some situations. Freudenthal 
(1978) and Noelting (1980a; 1980b) have used the distinction interna l -external; 
Lybeck (1978), the distinction within-between; and Karplus, Pulos, and Stage 
(this volume) have discussed findings on the preference of students for scalar or 
internal aspects rather than function or external aspects. I would like to stress a 
few points in order to clarify the main theoretical issues discussed. 

First, problems of comparing tastes, concentrations, or densities, as used in 
most studies on the development of ratio, (e.g., Noelting, 1980a; 1980b) are 
different from direct proportion problems (isomotphism of measures). 

In direct proportion problems, there are only two variables and an invariant 
relationship (the function) between these two variables: the cost of goods, the
speed, or the density is ,;i;iven as constant. The problem is to find x = _f(c),
knowing a, b = f(a), and c; it is.not to compare two functions! andf'.
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In most studies on ratio-concept development, the function is also a variable: 
for instance, in Noelting's excellent studies (1980a; 1980b) the experimental 
paradigm involves three variables: the number of glasses of water, the num�r of 
glasses of orange juice, and the taste or concentration, which is a quotient of the 
two other variables. The problem may be viewed in different complementary 
ways: 

1 . Direct comparison of two function-ratios 
2. Decomposition of this problem into two other problems, relying upon two 

theorems:
a. concentration is proportional to orange juice, provided water is held 

constant;
b. concentration is inversely proportional to water, provided orange juice

is held constant. 

In this decomposition, one can easily recognize the structure of multiple 
proportion: .the quantity of orange juice is a bilinear function of the quantity of 
water and of the concentration wished. Ratio-comparison situations cannot be 
analyzed as simple-proportion problems. 

Noelting 

Vergnaud 

first mixture second mixture 

water orange 

internal 

2 3 

external 

all ratios, internal and external, may vary. 

scalar 

scalar 
4 6 c 'f J( )
6 9 

function 

scalar 

scalar 

water 

3 

internal 

the function-ratio is invariant; scalar ratios may vary, 

but they are equivalent on both sides between two same 

lines. 

SCHEMA 5.35 

orange 

external 

4 
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Second, the dimensional analysis of function ratios is clear when M1and M
2 

have different dimensions, such as: time in hours and distance in kilometers for 
speed, volume in cc and mass in g for volumic mass, water in glasses and sugar 
in spoonfuls for sugared-water concentration, or even when M1 

and M2are the 
same magnitudes, expressed in different units, as is the case in problems of 
conversion from one unit system into another one. In many studies on ratio
concept development, because experimenters want the unit to be the same (glass
es of the same size for water and orange juice), the quotient of two dimensions 
does not appear as clearly. Moreover, i t  is not invariant. The internal-external 
distinction made by Noelting is different from the scalar-function distinction, as 
can be seen in Schema 5.35. Although some results on ratio-concept develop
ment are well established (Hart, 1981; Karplus et al., Chapter 3, present volume; 
Noelting, 1980a; 1980b; Suydam, 1978), more experiments are needed to clarify 
the dependence of this development on the different aspects of multiplicative 
structures. 

FIRST NOTION OF FRACTION 

I now report some results on the scalar operator concept that have been 
obtained with a different experimental paradigm. In her dissertation on the first 
ideas of children on fractions, Mariam Salim (1978) has used three different 
tasks: 

1 .  Knowing the referent quantity and the fraction operator, find the compared 
quantity 

2. Knowing the referent and the compared quantity, find the fraction operator 
3. Knowing the fraction operator and the compared quantity, fmd the referent

quantity.

The tasks involved different 'sorts of magnitudes: 

1 .  Discs (continuous) on which lines had been drawn, to divide them into n 
parts (2, 3, 4, 5, 6) 

2. Strips of paper (continuous) with no drawing
3. Sets.of pearls (discrete)

and different numerical values: 

l .  1/N (N < 10)
2. PIQ (P < 4 Q < 10).

Her most important finding is that understanding fractions depends heavily on
their numerical value. Whereas all three tasks are easily achieved with continu
ous and discrete quantities for 1/2 and l/4, they are still very difficult for other 
fractions. 
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There is a four . year decalage on most tasks between I /2 and other unit 
fractions; except l/ 4 which is intermediary, and 1 / 3 which is a bit more difficult 
than other unit fractions (in French un tiers does not refer to trois as simply as un 
cinquieme does to cinq). 

In the first grade (6- 7-year-olds), 1/2 fractions are fully mastered by 30% of 
the students and partly mastered by 50%. In the second grade, a few students 
deal fairly well with l /4 fractions and start dealing with other unit fractions. In 
the third grade, nearly 40% of the students reach that stage, but this proportion 
increases rather slowly in the fourth and the fifth grades .. In the fifth grade, all 
students master 1/2 fractions but only 40% master 3/4 and 2/5 fractions. 

The difficulty of the three tasks was expected to be different and also to vary 
for discrete and continuous quantities. Salim did find some differences, but not 
as large as she expected, and very small compared with the differences due to the 
numerical values. It seems to be typical of unit fractions that only slight dif
ferences exist between the "find the compared quantity" task, the "find the 
operator" task, and the "find the referent quantity" task. Differences are bigger 
for PIQ fractions, as we see subsequently. 

If these findings were confirmed , it would be an argument in favor of the 
relational character of fractional quantities: either the three-tem1 relationship is 
mastered in all three tasks, and then the fraction is understood, or none of the 
tasks is solved. 

These findings must be contrasted with another result obtained by Salim in a 
simpler task: as students were presented discs (with drawn division Jines) and 
asked to show one-half, one-quarter, one-fifth, - three-quarters, two-fifths, 
50% of the first-grade students were successful in the most difficult items. But 
this success is ambiguous because the procedure used by students was counting. 
One typical error of young students in the "find the compared quantity" task 
(discrete case) illustrates this ambiguity: when asked to find one-fifth of a set of 
pearls, many young students made a subset of 5 pearls. 

Another error illustrates the inclusive character of the very first notion of 
fraction for children: when asked to find one-fifth of a set of pearls, or a strip of 
paper, many students were satisfied with just a part. 

Another interesting result was found by Salim in comparison tasks: except for 
1/2 and l /4 fractions, students were not able to compare 1/n and 1/n' fractions until 
the third grade. But first graders were able to say that 3/5 was bigger than 2/5 by 
using a model that has nothing to do with fractions: 3 ''something" is bigger than 2 
"something. "  Third graders and fourth graders were not as successful on this 
item, because they tried to take the fractional character into account (U�shape 
curve). Most interesting were the explanations given by students: when asked to 
compare 1/n and l/n' fractions, younger students referred to whole numbers n and 
n' and failed, whereas older students (third and fourth graders) referred to the 
nnmhP.r of sh:ires . Tht>.<:P. rl".�nlts .�nppm1 the. thesis that the first notion of fraction 
is inclusive, and refers to sharing operations. 
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In another experiment (Vergnaud, Errecalde, Benhadj, Dussouet, 1979) with
older students (fifth and sixth graders), we systematically compared the inclusive 
case and the exclusive case. In three different contexts (customers in a restaurant, 
trees in a forest, load of a truck), students were faced with the three tasks: find 
the compared quantity, find the fraction operator, find the referent quantity. All 
fractions were PIQ fractions (where P and Q were different from 1). 

None of the tasks· was trivial, but we did observe that the ''find the compared 
state" tasks were easier than the two others (60% success instead of 40%). 

Then we compared the ''find the fraction operator'' tasks in the inclusive case 
(comparison of the part and the whole) and in the exclusive case (comparison of 
one part to another part). In the exclusive case, the success rate was about half 
the rate obtained in the inclusive case: from 10 to 20% instead of 40%. 

This last result has convinced me that it is necessary to study the ratio-concept 
development in different contexts and in different frameworks. It would probably 
be fruitful to plan an extensive study on multiplicative structures, with different 
experimental paradigms involving different aspects of the ratio concept. 

Linear Function and n-linear Function: Dimensional 
Analysis 

The second approach for developing multiplicative structures with students 
includes the concepts of variable, function, linear function, n-linear function, 
and dimensional analysis. Although a linear function is a mapping from the set of 
real numbers into itself, and not from rational measures into rational measures, 
the linear model fits very well with the multiplicative structures. A fonnal  
derivation has been attempted by Kirsch (1969). I do not repeat here the analysis 
described above. What I would like to stress is the necessity of identifying very 
clearly for students the different variables, the different operators, and the differ
ent ways of solving the same problem. 

One way to clarify these distinctions is to use symbolic representations that 
discriminate among different variables, different relationships, and different op
erations. For example, representing data and solutions in tables helps discrimi
nate magnitudes of different dimensions (different columns or lines for different 
kinds of magnitudes) and relationships of different types (scalar relationships, 
function relationships, inverses, composed scalar and function relationships). 
We have used such representations in different situations (Rouchier, 1980) and I 
will report here only one example used with eighth graders. 

THE FARM PROBLEM 

'' A farm, in the Beauce country, has an area of 254.5 ha. Half of it is devoted 
to growing wheat. The average crop is 6800 kg of wheat per ha. One needs 1.2 
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kg grain to !llake I kg flour; 1.5 kg flour to make 4 loaves. One loaf is, on the 
average, the daily consumption of two persons." 

Several tasks have been proposed to students; 

l .  Fonnulate and discuss a variety of questions. Are they well and completely 
formuJated? Which ones are the same, under different fonnulations1 

2. Make a table to represent the data and the relevant questions, and organize 
spatial correspondences.

3. Represent line-to-line and column-to-column operators.
4. Express the dimensional characteristics of these opetators.
5. Explain the different solutions used by different groups of students for the 

same question and analyze · them.
6. List the class of ordered pairs between any two columns (see the example 

of the wheat-flour function above) and the simplest fractional operator. 
7. Identify j{l) with the corresponding function operator. 
8. Express and explain rules for composing column-to-column operators. 

I can only summarize some experimental findings. More details can be found 
in Rouchier (1980). First, many questions are incompletely formulated and am
biguous. The equivalence of two different formulations is not immediately rec
ognized. Second, the use of different columns and lines for different dimensions 
and for values that are not source and image of each other is not easily discovered 
by students. Once in use, however, the spatial organization of data and questions 
helps to clarify relevant relationships and calculations. The discrimination be
tween simple proportion and multiple proportion can be more easily perceived 
and analyzed. Finally, function operations are difficult, except in the simple 
multiplication case. 

Schema 5.36 provides examples of possible tables and questions. 

area wheat flour loaves persons in 
one day 

6800 

b 2 

1.2 

1.5 4 

127.S a 

Examples of questions 

a What is the crop of the farm? 

b How much wheat is needed to make one loaf? 

1 

1 

1 

c 
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c How many persons can one feed during one day with the cro))? 

d How much wheat is needed to feed 100,000 persons during I week? 

persons 
100,000 C 

a

days 7 d 

365 wheat 

SCHEMA S.36 

One can easily imagine, in the first table, the succession of functions, with 
their dimensional meaning. 

X 6800 X l'/1.2 X 4/1.5 X 2 
wheat/area flour/wheat loaves/flour persomj,'loaf 

Interesting tasks can be organized around inversions and compositions of these 
functions. 

Vector space 

The vector-space model is again too strong for the sort of situations described 
here. It would be misleading to develop with seventh and eighth graders a formal 
presentation of vector-space theory. Yet the distinction between measure spaces, 
scalar operators, and function OJ?Crators is directly related to vector-space theory: 
for students, measures behave as vectors, scalar operations as linear combina
tions, and functions as linear mappings. Actually, measure spaces are only 
semivector spaces (measures are positive), scalars are only rationaJ numbers, and 
measures are only one-dimensional vectors. 

It is nevertheless possible to make students confront less trivial vector spaces 
and linear mappings. For example, suppose a restaurant buys 4 different sorts of 
fruit every day: x1 kg grapes, x2 kg peaches, x3 kg pears, x4 kg apples. Two other 
important variables are the total weight y1 and the total cost Yi· If, for a period (a
week, for instance), the cost of each sort of fruit is constant (a" az, a3, a4per 
kg), there is a nice nontrivial linear mapping from (x1 , x2, x3,x4) vectors into (y1, 

y2) vectors that make certain calculations easier. As 

Y1 
= X1 + -½ + X3 + X4 

and Yi = a1x1 ·+ a:;r
:;i 

+ a::!-½ + a.ix,h 

all isomorphic properties can be used and explained. 

1 



1 72 

ftV + V') = f(V) + ftV')
ft}\.V) = A/(V)

/(AV + >t'V') = >.j{V) + A'./{V') 

Conclusion 

Gerard Vergnaud 

One might think that there is a major contradiction in this chapter between some 
experimental results showing the difficulty for students of multiplicative struc
tures and some theoretical developments. Actually, these developments show 

· that problems met by students, even at an early stage of their school curriculum,
involve complex structures and concepts. This complexity is inescapable. How 
should we deal with it in mathematics education?

I have not referred to the Piagetian formal stage of development because I
cannot see where one could trace the limit between a concrete stage and a fonnal
stage in the development of such a diverse· conceptual field. For instance, con
trasting concrete numbers and pure numbers would be an oversimplification. It
would be misleading to view measures as concrete numbers, or handling of
operators as a concrete stage of understanding numerical operations; there are
important formal ideas and tlieorems about measures and operators.

It is true that most general properties of rational numbers cannot be expressed
and explained unless rational numbers are viewed as pure numbers. This is the
case of cross-multiplying, for instance:

alb = cld, ad :a: be, ale = bid 

What would it mean to multiply a and d if a were an M1-measure and d an M2-

measure? But it is true and important that understanding multiplicative structures 
does not rely upon rational numbers only, but upon linear and n-linear functions, 
and vector spaces too. 

Many mathematics teachers have the illusion that teaching mathematics con
sists of presenting neat formal theories, and that when this job is well done, 
students should understand mathematics. In fact, concepts develop by problem 
solving, and this development is slow. Problem-solving situations that make 
concepts meaningful to students may be far removed from an advanced mathe
matical point of view. They are nevertheless essential and they must be carefully 
and completely analyzed so that the development of concepts may be traced and 
mastered. 

Another tempting and inappropriate attitude is postponement: wait until stu
dents have reached a certain stage. This may be misleading too; there is no 
re:u:nn why students would develop complex concept6 if they do not meet com-
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plex situations. The pedagogical illusion (teach it properly, they will know it) 
and the natural development fallacy (wait until they reach the stage) are Scylla 
and Charybdis obstacles in mathematics education. The framework of conceptual 
fields, which provides teachers with a variety of situations and different-level 
analyses, should help them to make students progress, slowly but operationally. 
Still, there is a long way to go before we fully understand the development of 

· multiplicative structures.
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